segunda-feira, 8 de junho de 2015

Aula XIV (10/6/2015) - Regressão Múltipla - Seminários

Aula XIV - Regressão Múltipla - Seminários


Seminários
            Os alunos que quiserem podem apresentar os seus trabalhos de pesquisa para começarmos a interagir.
            Já analisamos dados e publicamos com alunos desta turma (2015), estamos analisando dados de outros, não é indispensável apresentar os trabalhos de pesquisa nesta disciplina. 
           Se fizerem a próxima disciplina Residencia em Analises Estatistificas, no próximo semestre a apresentação será mandatória. 
           Essa disciplina é a unica de nossa pós-graduado que não tem programa definido, os assuntos abordados nessa disciplina são os problemas de pesquisa dos alunos, logicamente os aspectos estatísticos. 
           Essa disciplina é interessante por que tem três professores na sala de aulas: a Prof. Sonia especialista em Amostragem e Estatística Experimental, o Prof. Tadeu, especialista em Estatistifica Multivariada e Estatística Experimental e eu, Estatística Robusta para Pesquisa e Gestão.                 Alem dos professores participam alunos de mestrado, doutorado e pós-doutorado em estatistifica da ESALQ.



Regressão Múltipla

Exemplo em SAS (Todo o que está escrito em fonte azul é entrada os saída do SAS):


Estamos testando a influencia das variáveis: Quilocalorias ingeridas por dia (Kcal_d), dos Quilômetros que as pessoas correm por semana (Corr_s) e das Xícaras de Chá do Sol (Cha_Sol), que é recomendado para emagrecer, anticancerígeno, antienvelhecimento e antidiarreico, as 3 variáveis anteriores no Índice de Massa Corporal (IMC). Veja o comando SAS para testar esse modelo:
model IMC = Kcal_d Corr_s Cha_Sol;


O Modelo Estatístico é:

IMC = Bo + B1 * Kcal + B2 * Corr_s  +  B3 * Cha_Sol  +                        Erro do Modelo


IMC é a: 
 variável dependente (efeito)

Kcal_d Corr_s Cha_Sol:    
                          são as variáveis independentes (causa)


data multipl;
input IMC Kcal_d Corr_s Cha_Sol;
cards;
28 2500 1 20
19 2100 34 19
22 2300 12 18
29 2600 . 22
20 2200 17 25
18 2100 32 25
29  2780    0.5 28
31  2890    1   27
20  2000    10  25
;
proc glm;
model IMC = Kcal_d Corr_s Cha_Sol;
run;



Resultados:


The SAS System


The GLM Procedure
Number of Observations Read 9
Number of Observations Used 9




The SAS System


The GLM Procedure
Dependent Variable: IMC

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 205.9795169 68.6598390 57.02 0.0003
Error 5 6.0204831 1.2040966
Corrected Total 8 212.0000000



Aqui podemos ver que se rejeita a Hipótese:

Rejeita-se Ho: B1 = B2 = B3 = 0 (ou seja que não ha nenhuma relação de causa  -->  efeito) com (1-0,0003) * 100 =  99,97 % de confiança. Então existe alguma relação causas efeito.

Quando a confiança para se rejeitar Ho for menor do que 95%, ou a margem de erro menor do que 0,05 = 5%, então nenhuma variável independente esta influenciado o IMC (variável dependente). Não foi esse o caso deste exemplo.
Cola analise com dado perdido @@@@@@@@@@@@@@



R-Square Coeff Var Root MSE IMC Mean
0.972057 4.848561 1.133351 23.37500


Source DF Type I SS Mean Square F Value Pr > F
Kcal_d 1 169.2880791 169.2880791 131.79 0.0003
Corr_s 1 8.4790347 8.4790347 6.60 0.0620
Cha_Sol 1 0.9699462 0.9699462 0.76 0.4339


Source DF Type III SS Mean Square F Value Pr > F
Kcal_d 1 43.68364463 43.68364463 34.01 0.0043
Corr_s 1 8.65365842 8.65365842 6.74 0.0603
Cha_Sol 1 0.96994618 0.96994618 0.76 0.4339


Parameter Estimate Standard Error t Value Pr > |t|
Intercept 0.1169092515 5.30174186 0.02 0.9835
Kcal_d 0.0116183745 0.00199228 5.83 0.0043
Corr_s -.1229135600 0.04735485 -2.60 0.0603
Cha_Sol -.1067422116 0.12283635 -0.87 0.4339


Podemos ver que a estimativa dos parâmetros 
Bo, B1, B2  e   B foi:



Parameter
Estimate
Bo = Intercept
0.1169092515
B1 = Kcal_d
0.0116183745
B2 = Corr_s
-.1229135600
B3 = Cha_Sol
-.1067422116


Podemos observar que:
             B1 > 0
                          B <0 
                 B <0
            assim as variáveis independentes (causa) ainda sem pensar em significância estatistifica atuaram em relação a IMC da seguinte forma: 
             B1 positivamente ou seja quando aumentam as quilocalorias por dia aumenta o IMC
             B2 negativamente    ou seja quando aumenta corrida diminuí o IMC  
              B3  negativamente    ou seja quando aumentam as xícaras de chá por sema diminui o IMC 


Agora temos que observar para quais variáveis independentes o coeficiente foi estatisticamente diferente de O (zero), para isso temos que observar a margem de erro do teste de cada coeficiente:


Parameter
Estimate
Pr > |t|
Bo = Intercept
0.1169092515
0.9835
B1 = Kcal_d
0.0116183745
0.0043
B2 = Corr_s
-.1229135600
0.0603
B3 = Cha_Sol
-.1067422116
0.4339


Assim:
            O Intersepto foi igual a zero (Bo = Intercept), o que tem muito poco valor pratico, seria o valor do IMC se todas as variáveis independentes fossem zeradas, logicamente se a ingestão diária de calorias fosse zero o individuo estaria morto.
            O coeficiente da variável independente Quilocalorias Ingeridas por Dia (B1 = Kcal_d)  foi diferente de zero, assim com 99,57 % de confiança podemos afirmar que a quantidade de quilocalorias ingeridas por dia impacta positivamente no IMC.
            O coeficiente a variável independente Quilômetros que as pessoas correm por semana (B2 = Corr_snão foi diferente de zero se utilizarmos o critério de 95% de confiança (ou 5% de margem de erro), porem esta muito perto da significânciarejeitaríamos a hipótese de ser igual a zero com 94% de confiança. Assim poderíamos entrar na discussão da suficiência do tamanho amostral, foi igual a 9 pontos amostrais. Esse tamanho amostral é insuficiente para todos os critérios que o professor conhece:
                      - Teorema do Limite Central da Estatística ( o mais importante da Estatística) requer no minimo 30 pontos amostrais;
                      - Recomendação da Estatística Experimental, minimo 10 graus de liberdade do resíduo e 20 do total ajustado, assim deveríamos ter no minimo 21 pontos amostrais, 
                      - Recomendação das normas ISO, minimo 9 graus de liberdade do resíduodeveríamos ter 13 pontos amostrais.
    
Vemos que não conseguimos satisfazer nenhum dos 3 critérios, assim uma significância de 94% é uma evidencia forte de que a variável  Quilômetros que as pessoas correm por semana (Corr_s) tem influencia significativa no IMC, uma relação inversamente proporcional, assim quando aumenta a corrida diminui o IMC. Seguramente se aumentarmos o tamanho amostral chegaremos a uma significância maior do que 95%.

                  O coeficiente a variável independente Xícaras de Chá do Sol por semana ( B3Cha_Sol) foi não significativa (p < 0,4339), assim o Chá do Sol não influenciou no IMC ou não tivemos argumentos estatisticamente significativos para rejeitar Ho: B3 = 0.










Nenhum comentário:

Postar um comentário